Vai al contenuto principale
Oggetto:
Oggetto:

Calcolo delle Probabilità 2

Oggetto:

Probability 2

Oggetto:

Anno accademico 2016/2017

Codice dell'attività didattica
INT0411
Docente
Prof. Cristina Zucca (Titolare del corso)
Corso di studi
Laurea Triennale Interfacoltà in Matematica per la Finanza e l'Assicurazione
Anno
3° anno
Periodo didattico
Primo semestre
Tipologia
D.M. 270 TAF A - Base
Crediti/Valenza
6
SSD dell'attività didattica
MAT/06 - probabilita' e statistica matematica
Modalità di erogazione
Doppia
Lingua di insegnamento
Inglese
Modalità di frequenza
Facoltativa
Tipologia d'esame
Orale
Prerequisiti

L’aver acquisito I concetti presentati nel corso di Calcolo delle probabilità
e Statistica e di Analisi 1 è indispensabile per una buona comprensione di questo corso. E' indispensabile aver già superato l’esame.


Concepts introduced in the Probability and Statistics and Mathematical Analysis I class are mandatory for a good comprehension. It is mandatory having passed the exam of Probability nd Statistics.
Propedeutico a

I concetti introdotti in questo corso sono utili a quanti proseguano con la laurea magistrale, specie se in in ambito probabilistico o finanziario. Queste competenze sono anche utili a chi intenda entrare nel mondo del lavoro dopo la Laurea Triennale.


Contents of these classes are useful to students that will be enrolled in a Master program. This is particularly true for those who want to specialize their studies in a probabilistic or finance context. These topics are useful to those interested to get a job after the bachelor studies.
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Il corso si propone di sviluppare negli studenti le capacità necessarie per formulare modelli probabilistici di situazioni di interesse applicativo. Lo studio di processi stocastici e delle relative proprietà verrà finalizzata alla formulazione di modelli relativi a situazioni reali. Tra gli obiettivi del corso vi è lo sviluppo delle capacità necessarie per la formulazione e lo studio di semplici modelli probabilistici e lo sviluppo di capacità di problem solving, l'abitudine al lavoro di gruppo e ad argomentare in supporto delle proprie tesi.

Students will develop the necessary skills to write down simple probabilistic models of applied interest. The introduction of stochastic

processes and their properties is always motivated by the wish to
develop models for observed phenomena. Aim of the course include the
development of the abilities for the formulation and the study of simple
stochastic models, for problem solving, for group working  and to support personal thesis with mathematical arguments. 

Oggetto:

Risultati dell'apprendimento attesi

Conoscenza delle principali metodologie utili per lo studio di alcune classi di processi stocastici a tempo e spazio discreti e continui. Capacità di utilizzare i processi di Markov in ambito modellistico. Sviluppo delle abilità necessarie per la formulazione di modelli stocastici di interesse per le applicazioni.

Knowledge of methods useful to study some classes of stochastic
processes. Ability in using Markov processes to model
observed facts. Development of abilities useful to propose and study
stochastic models of applied interest.

Oggetto:

Modalità di insegnamento

Lezioni frontali alla lavagna sia teoriche sia per la risoluzione di esercizi.

Lessons at the blackboard including theory and exercises.

Oggetto:

Modalità di verifica dell'apprendimento

Esame orale con soluzione di esercizi. Viene inizialmente richiesto lo svolgimento di due esercizi, la prova orale consiste in domande relative alla teoria, alle dimostrazioni presentate nel corso e ci sarà una discussione degli errori degli esercizi svolti.

Oral exam, solution of exercises is request during the test. Initially the solution of two exercises is required, the oral examination consists of questions related to the theory, demonstrations presented in the course and there will be a discussion of the errors of the exercises.

Oggetto:

Programma

Variabili aleatorie multivariate. Probabilità condizionate e valori attesi condizionati con applicazioni (tempo medio per il riapparire di un pattern). 
Catene di Markov: equazione di Chapman Kolmogorov; classificazione degli stati, probabilità limite; applicazioni: cammino casuale, rovina di un giocatore. 
Distribuzione esponenziale e processo di Poisson: principali proprietà ed esempi di applicazioni: problemi di code, di affidabilità. Processo di Poisson composto .
Catene di Markov a tempo continuo: processi di nascita e morte. 
Moto Browniano e processi stazionari: distribuzione del massimo, tempo di prima uscita. Moto Browniano geometrico. Applicazioni in ambito finanziario: prezzo delle opzioni e modello di Black and Scholes. 

Nozioni di Copula e relative proprietà.

 

Jointly distributed random variables;  conditional probability and conditional expectation; examples (mean time for patterns)

Markov chains; Chapman Kolmogorov equation; classification of states; limiting probabilities; examples (random walk, gambler’s ruin).

 

The exponential distribution and the Poisson process; examples (queue problems; reliability problems); compound Poisson process.

Continuos-time Markov chains: birth and dead processes.

Brownian motion and stationary stochastic processes; maximum variable; geometric Brownian motion; example: Black and Scholes option pricing formula.

Copulas and their properties.

 

 

Testi consigliati e bibliografia

Oggetto:

- Ross S.M. Introduction to probability models. Academic Press, 2003.

- N. Privault "Notes on Markov Chains" 2015.

- G. Grimmett, D. Stirzaker "Probability and Random Processes", Third Edition, Oxford Un. Press, 2001.

- G. Grimmett, D. Stirzaker "One Thousand Exercises in Probability", Oxford Un. Press, 2001



Oggetto:

Orario lezioni

Oggetto:

Note

CALCOLO DELLE PROBABILITA' 2, INT0411 (DM270), 6 CFU: 6 CFU, MAT/06, TAF A (Base), Ambito Formazione matematica di base

PROPEDEUTICITA': Calcolo delle Probabailità e Statistica propedeutica a Calcolo delle Probabilità 2.

Oggetto:
Ultimo aggiornamento: 20/06/2016 12:46

Location: https://matematicafinanza.campusnet.unito.it/robots.html
Non cliccare qui!