Vai al contenuto principale
Oggetto:
Oggetto:

Metodi Geometrici

Oggetto:

Geometrical Methods

Oggetto:

Anno accademico 2020/2021

Codice dell'attività didattica
INT0423
Docente
Prof. Reto Buzano (Titolare del corso)
Corso di studi
[090712] MATEMATICA PER LA FINANZA E L'ASSICURAZIONE
Anno
2° anno
Periodo didattico
Primo semestre
Tipologia
D.M. 270 TAF B - Caratterizzante
Crediti/Valenza
6
SSD dell'attività didattica
MAT/03 - geometria
Modalità di erogazione
Mista
Lingua di insegnamento
Italiano
Modalità di frequenza
Facoltativa
Tipologia d'esame
Scritto e Orale
Prerequisiti

Conoscenza degli argomenti di Algebra e Algebra Lineare trattati nel corso di "Algebra Lineare e Geometria"

Conoscenza degli argomenti di Analisi trattati nel corso di "Analisi Matematica 1"

Verso la fine del corso saranno necessari alcuni argumenti del corso svolto in parallelo di "Analisi Matematica 2" (derivate parziali).


Good understanding of the contents of the courses "Analisi Matematica 1" and "Algebra Lineare e Geometria"

Propedeutico a
Tutti i successivi corsi di Analisi Matematica del secondo semestre e del terzo anno.
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Il corso si propone di fornire allo studente nozioni avanzate di algebra lineare e una introduzione alle geometria delle curve e superfici nello spazio e di fornire abilità rivolte alla soluzione di esercizi ed alla comprensione di teorie più avanzate. Ulteriore finalità è la preparazione dello studente all'applicazione delle nozioni apprese ad altre discipline scientifiche.

Introducendo nuovi e importanti concetti, il corso accresce la capacità dello studente di riconoscere nuovi problemi in nuovi contesti e di comprenderli individuandone gli aspetti essenziali. La significativa presenza di teoremi e dimostrazioni accresce la capacità dello studente di sostenere ragionamenti matematici con argomenti rigorosi e non immediatamente collegabili a quelli già conosciuti.

The course's aim is to provide students with advanced knowledge of linear algebra and an introduction to the geometry of curves and surfaces in space and to provide skills aimed at solution of exercises and understanding of more advanced theories. Another aim is to prepare the student to the application of concepts learned in other scientific disciplines.

Introducing new and important concepts, this course enhances the ability of the student to recognize new problems in new contexts and to understand them identifying their essential aspects. The significant presence of theorems and proofs increases the ability of the student to carry out a mathematical reasoning with rigorous arguments, not necessarily connected to those already known.

Oggetto:

Risultati dell'apprendimento attesi

Lo studente dovrà acquisire le principali nozioni teoriche e la capacità di svolgere esercizi di algebra lineare avanzata (determinazione della forma di Jordan di una matrice, esponenziale di una matrice) e di geometria differenziale delle curve e superfici nello spazio (determinazione di curvatura e torsione di una curva, studio della curvatura gaussiana di una superficie).

The student will acquire the main theoretical concepts and the ability to perform advanced exercises in linear algebra (determination of the Jordan normal form of a matrix, matrix exponential), and differential geometry of curves and surfaces in space (determination of curvature and torsion of a curve, the study of the Gaussian curvature of a surface).

Oggetto:

Modalità di insegnamento

L'insegnamento è svolto nel primo semestre e consiste in 48 ore (6 CFU). Metà delle lezioni (24 ore) diventano svolte in modo sincrono, prima con didattica frontale (che si può anche seguire via Webex) durante i mesi Settembre e Ottobre, poi online via Webex durante i mesi di Novembre e Dicembre. L'altra metà (24 ore) sarà svolta via didattica a distanza in modo asincrono. Le lezioni sono articolate in teoria ed esercitazioni. Non ci sono tutoraggi per questo corso.

Il link per la diretta streaming (giovedì 8:30-10:30) è: https://unito.webex.com/meet/reto.buzano - la riunione Webex diventa registrata e il video publicato sul sito moodle del corso.

Per maggiori dettagli si rimanda alla pagina web del corso su moodle.

 

The course is taught in the first semester and consists of 48 hours (6 CFU). Half of these lectures (24 hours) will be taught synchronously, first via classical frontal instruction (which one can also follow live on Webex) during the months of semptember and october, later online via Webex during the months of november and december. The other half consists of an asynchronous online learning component (video lectures and exercise sheets). The lectures consist of a mix of theoretical parts and exercises. There are no tutorials for this course.

The link to follow the synchronous lectures (Thursday 8:30-10:30) is https://unito.webex.com/meet/reto.buzano - lectures are recorded and the video of the recording is accessible on the moodle page of the course.

For more details, please see the web page of the course on moodle.

 

Oggetto:

Modalità di verifica dell'apprendimento

La prova scritta è costituita da esercizi. La prova è valutata in 30simi.

La prova orale e facoltativa (ma deve essere svolto nello stesso appello). Consiste in domande relative alla teoria e alle dimostrazioni presentate nel corso. Non ci sono domande che richiedono lo svolgimento di esercizi. Durante la prova orale ci sarà una discussione degli errori della prova scritta.

Modalità di svolgimento dell’esame in periodo di emergenza sanitaria Covid-19:
Entrambe le prove saranno svolte tramite in modo telematico con Webex.

The written exam consists of exercises. The test will be scored on a scale from 1 to 30.

The oral examination is optional (but needs to be done within the same exam session). It consists of questions related to the theory and demonstrations presented during the course. There will not be any exercises to be solved during the oral examination, but there will be a discussion of the errors of the written test.

Exams in the periodo of the Covid-19 emergency:
Both written and oral examinations will be carried out in telematically via Webex.

 

Oggetto:

Programma

Algebra Lineare
 
Spazi duali e biduali. Applicazioni aggiunte. Diagonalizzazione simultanea di matrici che commutano. Il polinomio minimo e il Teorema di Cayley-Hamilton. Forme canoniche di matrici: diagonalizzazione e forma di Jordan. Esponenziale di una matrice.

Geometria Differenziale

Curve nello spazio: curvatura e torsione di una curva. Basi di Frenet. Caratterizzazione di curve tramite curvatura e torsione.

Superfici nello spazio: piano tangente e vettore normale. Prima e seconda forma fondamentale. Curvature principali, Gaussiana e media.

Linear algebra

Dual and bidual spaces. Adjoint maps. Simultaneous diagonalization of commuting matrices. Minimal polinomial and Cayley-Hamilton theorem. Canonical forms for matrices: diagonalization and Jordan normal form. Matrix exponential.

Differential Geometry

Space curves: curvature and torsion of a curve. Frenet basis. Characterisation of some curves via their curvature and torsion.

Surfaces in Euclidean space: tangent plane and normal vector. First and second fundamental forms. Principal curvatures, Gaussian and mean curvature.

 

 

 

Testi consigliati e bibliografia

Oggetto:

Tutto il materiale necessario (dispense, prove d'esame passate, esercizi) è disponibile su Moodle.

All the necessary litterature is avaible in the web page of the course on Moodle.

 



Oggetto:

Orario lezioni

Oggetto:
Ultimo aggiornamento: 02/11/2020 11:17

Non cliccare qui!