Vai al contenuto principale
Oggetto:

Matematica Discreta - Non attivato nell'a.a. 2008/09

Oggetto:

Anno accademico 2007/2008

Codice dell'attività didattica
MF002
Docente
Prof. Margherita Roggero
Corso di studi
Laurea Triennale Interfacoltà in Matematica per la Finanza e l'Assicurazione
Anno
1° anno
Tipologia
Caratterizzante
Crediti/Valenza
7
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Conoscere ed usare in modo appropriato il linguaggio della teoria degli insiemi per formulare affermazioni e costruire in modo rigoroso semplici dimostrazioni. Saper riconoscere le principali strutture algebriche (gruppi, campi, anelli, domini euclidei, domini di integrità) e le loro proprietà nei casi più concreti (campi numerici, gruppi di funzioni biunivoche, l'anello degli interi, anelli di polinomi su un campo, anello di classi di resto).
Oggetto:

Risultati dell'apprendimento attesi

Conoscere e utilizzare il linguaggio degli insiemi. Saper risolvere esercizi di calcolo combinatorio. Lavorare con i vari anelli e campi numerici, in particolare in Z e in C. Eseguire calcoli in anelli di classi di resto e saper risolvere congruenze e sistemi di congruenze. Conoscere i principali risultati relativi alla fattorizzazione dei polinomi su Q, R e C.
Oggetto:

Programma

Il linguaggio degli insiemi: insiemi ed elementi; sottoinsiemi, unione intersezione, complementare, insiemi delle parti e partizioni, prodotto cartesiano.Corrispondenze e relazioni: relazioni d'ordine e di equivalenza. I numeri naturali e l'induzione. Generalità sulle funzioni. cardinalità di un insieme.Elementi di calcolo combinatorio: permutazioni, disposizioni semplici e con ripetizione; combinazioni semplici e con ripetizione. I binomiali.L'anello dei numeri interi: la divisione euclidea; il teorema fondamentale dell'aritmetica..Gli anelli delle classi di resto; congruenze e sistemi di congruenze lineari; la funzione di Eulero. Il campo dei numeri razionali e il campo dei numeri reali: notazione posizionale dei numeri; cardinalità; generalità sugli anelli di polinomi; numeri algebrici e trascendenti. I numeri complessi: notazione algebrica e notazione trigonometrica o polare. Il teorema fondamentale dell'algebra per i numeri complessi e per i numeri reali.; radici e potenze n-esime.

Testi consigliati e bibliografia

Oggetto:

Appunti ed Esercizi di Matematica Discreta (a cura del docente) liberamente scaricabili (vedi Materiale Didattico nella presente pagina).


Oggetto:

Note

NOTA BENE: per le date degli esami si faccia riferimento al corso di Matematica Discreta per il Corso di Studi in Matematica
Oggetto:
Ultimo aggiornamento: 03/09/2008 11:05

Location: https://matematicafinanza.campusnet.unito.it/robots.html
Non cliccare qui!